Ubuntu20.04部署TVM流程及编译优化模型示例

news/2024/7/3 14:33:33 标签: linux, llvm, clang, tvm

前言:记录自己安装TVM的流程,以及一个简单的利用TVM编译模型并执行的示例。

1,官网下载TVM源码

git clone --recursive https://github.com/apache/tvm

git submodule init
git submodule update

顺便完成准备工作,比如升级cmake版本需要3.18及以上版本。还有如下库:

sudo apt-get update
sudo apt-get install -y python3 python3-dev python3-setuptools gcc libtinfo-dev zlib1g-dev build-essential cmake libedit-dev libxml2-dev

2,安装clangllvm,ninja

llvm安装依赖clang和ninja,所以直接安装llvm即可顺便完成全部的安装。

llvm ,clang安装参考:Linux系统无痛编译安装LLVM简明指南_linux安装llvm11-CSDN博客

步骤如下:

git clone git@github.com:llvm/llvm-project.git

cd llvm-project
mkdir build

cd build

sudo cmake ../llvm -DLLVM_TARGETS_TO_BUILD=X86 -DCMAKE_BUILD_TYPE=Debug
sudo make -j8
sudo make install

检查版本:

clang --version
llvm-as --version

3,安装NNPACK

NNPACK是为了优化加速神经网络的框架,可以提高在CPU上的计算效率

git clone --recursive https://github.com/Maratyszcza/NNPACK.git
cd NNPACK
# Add PIC option in CFLAG and CXXFLAG to build NNPACK shared library
sed -i "s|gnu99|gnu99 -fPIC|g" CMakeLists.txt
sed -i "s|gnu++11|gnu++11 -fPIC|g" CMakeLists.txt
mkdir build
cd build
# Generate ninja build rule and add shared library in configuration
cmake -G Ninja -D BUILD_SHARED_LIBS=ON ..
ninja
sudo ninja install

# Add NNPACK lib folder in your ldconfig
sudo sh -c "echo '/usr/local/lib'>> /etc/ld.so.conf.d/nnpack.conf"
sudo ldconfig

4,编译TVM

如下步骤,在tvm建立build文件夹,把config.cmake复制到build中

cd tvm
mkdir build

cp cmake/config.cmake build

build里的config.cmake是编译配置文件,可以按需打开关闭一些开关。下面是我修改的一些配置(TENSORRT和CUDNN我以为之前已经配置好了,结果编译报了这两个的错误,如果只是想跑流程,可以不打开这两个的开关,这样就能正常编译结束了)

set(USE_RELAY_DEBUG ON)
set(USE_CUDA ON)
set(USE_NNPACK ON)
set(USE_LLVM ON)
set(USE_TENSORRT_CODEGEN ON)
set(USE_TENSORRT_RUNTIME ON)
set(USE_CUDNN ON)

编译代码:

cd build
cmake ..

make -j12

5,配置python环境

从build文件夹出来进入到tvm/python文件夹下,执行如下命令,即可配置python中的tvm库了。

cd ../python
python setup.py install

python中使用tvm测试,导入tvm不出错即配置tvm安装成功

import tvm

print(tvm.__version__)

6,一个简单示例

该测试来自TVM官方文档的示例,包括编译一个测试执行一个分类网络和编译器自动调优测试。仅先直观的看到TVM如何作为一个工具对模型编译并部署的流程。

1) 下载onnx模型

wget https://github.com/onnx/models/raw/b9a54e89508f101a1611cd64f4ef56b9cb62c7cf/vision/classification/resnet/model/resnet50-v2-7.onnx

2) 编译onnx模型

python -m tvm.driver.tvmc compile --target "llvm" --input-shapes "data:[1,3,224,224]" --output resnet50-v2-7-tvm.tar resnet50-v2-7.onnx

如果报这样的警告:

就在git上下载一份tophub,把整个文件夹tophub复制到 ~/.tvm/路径下

git clone git@github.com:tlc-pack/tophub.git
sudo cp -r tophub ~/.tvm/

解压生成的tvm编译模型,得到3个文件:

  • mod.so  作为一个C++库的编译模型, 能被 TVM runtime加载

  • mod.json TVM Relay计算图的文本表示

  • mod.params onnx模型的预训练权重参数

mkdir model
tar -xvf resnet50-v2-7-tvm.tar -C model
ls model

3) 输入数据前处理

python preprocess.py

图像处理代码文件:preprocess.py

#!python ./preprocess.py
from tvm.contrib.download import download_testdata
from PIL import Image
import numpy as np

img_url = "https://s3.amazonaws.com/model-server/inputs/kitten.jpg"
img_path = download_testdata(img_url, "imagenet_cat.png", module="data")

# Resize it to 224x224
resized_image = Image.open(img_path).resize((224, 224))
img_data = np.asarray(resized_image).astype("float32")

# ONNX expects NCHW input, so convert the array
img_data = np.transpose(img_data, (2, 0, 1))

# Normalize according to ImageNet
imagenet_mean = np.array([0.485, 0.456, 0.406])
imagenet_stddev = np.array([0.229, 0.224, 0.225])
norm_img_data = np.zeros(img_data.shape).astype("float32")
for i in range(img_data.shape[0]):
      norm_img_data[i, :, :] = (img_data[i, :, :] / 255 - imagenet_mean[i]) / imagenet_stddev[i]

# Add batch dimension
img_data = np.expand_dims(norm_img_data, axis=0)

# Save to .npz (outputs imagenet_cat.npz)
np.savez("imagenet_cat", data=img_data)

4) 运行编译模型

python -m tvm.driver.tvmc run --inputs imagenet_cat.npz --output predictions.npz resnet50-v2-7-tvm.tar

5) 输出后处理

python postprocess.py

执行之后得到分类结果的输出:

class='n02123045 tabby, tabby cat' with probability=0.621104
class='n02123159 tiger cat' with probability=0.356378
class='n02124075 Egyptian cat' with probability=0.019712
class='n02129604 tiger, Panthera tigris' with probability=0.001215
class='n04040759 radiator' with probability=0.000262

后处理代码:postprocess.py

#!python ./postprocess.py
import os.path
import numpy as np

from scipy.special import softmax

from tvm.contrib.download import download_testdata

# Download a list of labels
labels_url = "https://s3.amazonaws.com/onnx-model-zoo/synset.txt"
labels_path = download_testdata(labels_url, "synset.txt", module="data")

with open(labels_path, "r") as f:
    labels = [l.rstrip() for l in f]

output_file = "predictions.npz"

# Open the output and read the output tensor
if os.path.exists(output_file):
    with np.load(output_file) as data:
        scores = softmax(data["output_0"])
        scores = np.squeeze(scores)
        ranks = np.argsort(scores)[::-1]

        for rank in ranks[0:5]:
            print("class='%s' with probability=%f" % (labels[rank], scores[rank]))

6) 编译器自动调优

调优的算法使用的是xgboost,所以需要python安装一下这个库。

pip install xgboost

python -m tvm.driver.tvmc tune --target "llvm" --output resnet50-v2-7-autotuner_records.json resnet50-v2-7.onnx

7) 重新编译并执行调优后的模型

python -m tvm.driver.tvmc compile --target "llvm" --tuning-records resnet50-v2-7-autotuner_records.json  --output resnet50-v2-7-tvm_autotuned.tar resnet50-v2-7.onnx

python -m tvm.driver.tvmc run --inputs imagenet_cat.npz --output predictions.npz resnet50-v2-7-tvm_autotuned.tar

python postprocess.py

预测结果:
 

class='n02123045 tabby, tabby cat' with probability=0.610552
class='n02123159 tiger cat' with probability=0.367180
class='n02124075 Egyptian cat' with probability=0.019365
class='n02129604 tiger, Panthera tigris' with probability=0.001273
class='n04040759 radiator' with probability=0.000261

8) 比较编译前后执行模型的速度

python -m tvm.driver.tvmc run --inputs imagenet_cat.npz --output predictions.npz  --print-time --repeat 100 resnet50-v2-7-tvm_autotuned.tar

python -m tvm.driver.tvmc run --inputs imagenet_cat.npz --output predictions.npz  --print-time --repeat 100 resnet50-v2-7-tvm.tar

执行时间如下,上面是自动调优过的的,可以明显看出推理时间上的优化效果。 

Execution time summary:
 mean (ms)   median (ms)    max (ms)     min (ms)     std (ms)  
  84.6208      74.9435      143.9276     72.8249      19.0734 

 mean (ms)   median (ms)    max (ms)     min (ms)     std (ms)  
  131.1953     130.7819     140.6614     106.0725      3.5606

比较了一下两个编译后模型的Relay计算图json文件的区别,就看到了算子数据layout的区别,更多细节还是要看源码吧

参考:TVM Ubuntu20安装_ubuntu20.04配置tvm_shelgi的博客-CSDN博客


http://www.niftyadmin.cn/n/5239974.html

相关文章

flutter学习-day3-dart基础

📚 目录 变量声明操作符数据类型控制流错误处理和捕获函数mixin异步 FutureStream 本文学习和引用自《Flutter实战第二版》:作者:杜文 1. 变量声明 var 类似于 JavaScript 中的var,它可以接收任何类型的变量,但最大…

信息保密必备:预防文档泄密的关键方法和技巧!

企业文档的保护功能不仅要从源头上进行,以此杜绝文档在使用、传播过程中产生的泄密风险,同时也要对文档内容本身进行保护,预防各种手段窃取敏感信息的行为。针对通过拷贝、截屏、拍照等方式盗窃走重要文档内容信息的情况,迅软DSE文…

Java基础-----Math类相关的API(一)

文章目录 1. Math类1.1 简介1.2 常用方法1.3 小练身手 2.Random类2.1 简介2.2 构造方法2.3 常用方法 3. BigInteger和BigDecimal3.1 简介3.2 创建方式3.3 方法3.4 RoundingModel处理方式(8种)3.4.1 **UP**3.4.2 **DOWN**3.4.3 **CEILING**3.4.4 **FLOOR**3.4.5 **HALF_UP**3.4.…

zabbix的自动发现机制、代理功能、SNMP监控

一、自动发现(不安全,有时会失效,建议手动添加主机) 1、定义 zabbix主动与服务端联系,将自己的地址和端口发送给服务端,实现自动添加监控主机 客户端是主动的一方 2、缺点 若自定义网段中主机数量太多…

python+Qt5+sqllite 个性化单词记忆软件设计

问题描述: 设计一款背诵英语单词的软件。用户可以根据自己的需求导入需背诵的词库,并可以编辑自己的词库。背单词时有两种模式供选择:系统可以给出中文提示,用户输入对应的单词,也可输出单词让用户输入中文意思。系统判…

vFW搭建IRF

正文共:2328字 40图,预估阅读时间:5 分钟 IRF(Intelligent Resilient Framework,智能弹性架构)技术通过将多台设备连接在一起,虚拟化成一台设备,集成多台设备的硬件资源和软件处理能…

Rust的From与Into Trait

Into的本质是调用了From Trait 的方法。 From是底层的方法,把From实现了,Into的实现,编译器会自动根据From Trait生成Into Trait的代码 编译器自动类型推导出Into Trait的U的类型,调用了U类型的From的方法,实现其他类…

旋转设备状态监测与预测性维护:提高设备可靠性的关键

在工业领域的各个行业中,旋转设备都扮演着重要的角色。为了确保设备的可靠运行和预防潜在的故障,旋转设备状态监测及预测性维护变得至关重要。本文将介绍一些常见的旋转设备状态监测方法,并探讨如何利用这些方法来实施预测性维护,…